METHOD OF CALCULATING THE ENERGY FLUX-~DENSITY
DISTRIBUTION IN AN IMAGE SPOT FOR A HEMISPHERICAL
DIFFUSE-REFLECTION DEVICE
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A method of calculating the energy flux-density distribution in the image spot for a hemispheri-
cal diffuse-reflection device is proposed. The case of a diffusely emitting spot is specially
considered.

In view of the extensive use of infrared technology in industry the need has arisen for a clear know-
ledge of various thermal-radiation characteristics of the materials employed. Special difficulties arise
when measuring the spectral hemispherical transmission and reflection coefficients of materials T, and
R,. For measuring directional hemispherical reflection and transmission coefficients, an attachment with
a reflecting hemisphere is often employed [1-4].

The use of such an attachment fails to provide absolutely accurate values of the coefficients Ry and
T, . The main causes of error are as follows: 1) losses of radiation reflected from the sample through
the entrance aperture in the hemisphere; 2) the screening action of the radiation-receiver mounting; 3)
aberrations of the optical system, as a result of which the image of the emitting spot may exceed the dimen-
sions of the receiving area on the receiver.

The losses of reflected radiation through the aperture in the hemisphere were considered in [3] for
the case of diffuse reflection from the sample. In the same paper consideration was given to estimating
the error due to optical aberrations, and it was concluded that the aberrations were minimized for the con-
dition s < 0.1R,

Fig. 1. Course of the rays in the system,
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On the basis of this investigation by itself, the requirements to be imposed upon the radiation receiver
cannot be formulated exactly. In the present investigation we therefore set ourselves the problem of deter-
mining the energy flux density in the image spot, so as to make a correct choice of the dimensions of the
receiving area in the receiver, as well as its position, and also to calculate the measuring errors arising
from optical aberrations. However, the energy flux-density distribution depends not only on the geometry,
but also on the reflection indicatrix, of the sample. In the present instance we therefore considered the
case of absolutely diffuse reflection.

Formulation of the Problem

Let us consider a concave reflecting hemisphere of radius R set on the coordinate plane XOY with the
origin of coordinates at the center of the hemisphere (Fig. 1).

On the XOY plane under the hemisphere is a certain emitting spot 1I; with a radiant energy density
E{(x(, y1). The set of all the rays arising from 1I; is reflected in the hemispherical mirror and creates
an image spot 1, on the XOY plane.

We made the following assumptions: 1) The reflection coefficient of the reflecting hemisphere is
equal to unity; 2) 1, emits diffusely at every point; 3) the absorption in the spot 0, is total; 4) the emitting
spot T is arranged in such a way that for all its points, the condition x; < 0 is satisfied,

An additional requirement imposed upon the position of the spot 11 lies in the fact that every ray
emerging from M, is reflected once and only once in the hemispherical mirror before traveling to the image
spot M.

We note that the image of the point A (xy, yy) is blurred so as to form a section of straight line, which
passes through the points A;(x;, y,) and O, while the radiation arriving at the point A,(x,, y,) arises solely
from those points which lie on the continuation of the straight line OA,(x,, y;) inside the spot 11;.

Course of the Rays in the System

Let us consider that a ray leaves a point A (xq, yy) of the emitting spot in a certain direction. Then
the point Ay(xy, y,) is that point of the spot 11, struck by this ray after being reflected at the point A; on the
concave hemispherical mirror. The points A;(x;, y;) and A, (x,, y,) lie on a single diameter and on different
sides of the center of the hemisphere, It follows from assumption, 3) that for all points of the spot Hz,x2> 0.

Let us introduce a new coordinate axis p passing through the points 0, A;(x;, y4), and A,(x;, yy). Let
the values of p increase from point A; (x;, y;) to Ay(xy, y;). The point 0 is taken as origin of coordinates.
Thus, forall points belonging to 1I; we have the condition p; < 0, while for the points in the image spot p,>0.
Since the hemisphere is symmetrical with respect to the p axis, we confine our attention to the plane case
in our subsequent solution of the geometrical problem.

It follows from Fig. 1 that

A, = VR — 93 + (o1 — 00)"s 18
Ay = v 'AszP%—’f“(Pz — o) 2)

The relationship between the coordinates of a point in the Cartesian coordinate system XOY and in the
coordinate system (pa) is described by the expressions
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Fig. 3. Energy flux~density distribution in the image spot for
a rectangular emitting spot: a)a/R =-0.0364; b/R =—0.0546;
f/R =+0.0454; C/R =0.0454; b) a/R =~0.1; b/R =+0,1182; f/
R =+0,0454; C/R=0.1091 [the figures on the curves give the
values of 100 (Yo/R)1. '

p=V xR azafctg %—1

Since the angle of incidence is'equal to the angle of reflection, it follows from the triangle A;A\A,
that :

Ay

AOAZ

b
U

' @)

Using Egs. (1), (2), and (3) we obtain a relationship between the coordinates of the three points A,
AI’ and Az;
- R*(p, 4+ p5) )

f = 200, @)

On varying the coordinate p, from +R to ~R, the coordinate p, increases monotonically and ata
certain moment reaches the value p, =R, which is equivalent to the appearance of a double reflection.
From this we obtain the necessary (and sufficient) condition that the reflection from the hemisphere should
be single for the points in the spot

R
pl>/'— "3_ 5)

Let a ray having a direction defined by the angles ¢ and & (Fig. 1) leave the point A;(x;, y;) of the
emitting spot. Using Fig. 1 we then have

AM V R—p}
AA VR + (o, — )

sin® = (6)

From triangles A;AyB, AyMB and AjA{M we have

cos @ = sin® cos Y. )

Energy Density in the Image Spot

Let us consider the emitting spot Tly. Let an elementary energy flux dq be emitted from a certain
elementary area dF; of the diffusely emitting spot 1; with an emitted energy density E;(p;, a) in a direc~
tion making an angle ¢ with the normal to the XOY plane in an elementary solid angle dw [5]:
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dg = L E, (p,, @)cos @dF do.
n (8)

Clearly, the whole energy flux is focused by the hemisphere on an elementary area of the image spot
dF,. Inthe {px) coordinate system the elementary areas may be expressed in the form

dF, = pydp,da, dF, = pydp,de.
The energy density in the spot 11, may then be written in the form

dE, (0, o) = 1—E1 {p;, ) cos o sin (D—g’gsi dydd. (9
3

oli{o

Using Eqs. (6) and (4) we obtain

R*— popy
R —d
V RE— 05 (R* — 2py0; + p3) (19)
2
dpy = — 9 dpol 2 .
i LI I -
" a
It follows from Eqs. (7), (9), (10), and (11) that
E\(py, @)} RE— 03 (R® — popy) (20001 — REY’
= - bdpdp, .
dEs by ) 911 (RZ— 2040y -+ P P10:R° 05 Vel a2)
Expressing oq in terms py and g, and substituting into Eq. (12), we have
E (py, o) R (o, “’01)1/4 pz—Ro 0, +po)
(0, = cos Pdpdp, .
dE, (p,, @) S (I —9192)29192 pdpdp, (13)

Integrating with respect to ¢ from —n/2 to +7/2 and with respect to p; from v {p;. ) to (o2, o), we
obtain a final expression for E,(p;. o)

1 Bips.@)
E‘.". (sz a): E \S El(pp )

¥(p:. &)

Rb (o, — PI)V 40? 100 — R? (o -+ 0.)°
(R — 0,0)° 07 P}

dp,. (14)

Equation (14) may be reduced to dimensionless form

Bepe (0, — 0))1 HOFEF — o, + o)

, 1 .
Ez(pz’ o) = ZE u\ El(p}’ ) (1'—91 ) (PI) (P ) dpl’ {15)

VP, @)

where p'=p/R.

We see from Eqs, (14) and (15) that the energy flux-density distribution at the point A, (x,, y,) of the
image spot is calculated by summing the energy contributions introduced by emitting points lying on the
continuation of the straight line joining point A, (x,, y,) to the center of the hemisphere, i.e., the p axis.

The limits of integration y (py, o) and B{o;, &) are determined by the geometrical dimensions of the
emitting spot and by the conditions arlsmg from Eqs. 4) and (5). It may readily be shown that on the basis
of condition (5),the range of variation of p, is divided into two parts. For 0<p, <R/5 the range of variation
of p; is given by the expression

L — (16)

SO 57 - (1n
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In order to findy oy, @) and 8 (0,, «) for the point A, (x,, y;), we must simultaneously consider both the
geometrical ranges of variation of p; (coordinates of the points at which the p axis intersects the boundary
of the emitting spot) and also Eqs. (16) and (17).

The foregoing method of calculation was realized in the form of a program for the Minsk-22 computer.
The energy flux density was calculated in the image spot I, for a rectangular emitting spot II; and a number
of values of C/R and E,(py, @) =1 (Figs. 2 and 3),

Thus, for the case of diffuse reflection we may use the foregoing method of calculating the energy flux
density in the image spot to determine the measuring error due fo optical aberrations very accurately and
subsequently to reduce it to a minimum,

NOTATION

R, radius of reflecting hemisphere; o, angle between the positive directions of the p and OX coor-
dinate axes; fi, normal to the XOY plane; ¢, angle between n and the direction in which the ray leaves the
emitting spot; &, angle between the positive direction of the coordinate axis p and the direction in which
the ray leaves the emitting spot; y, angle between n and a perpendicular dropped from point A, to the p
axis; C, distance between the center of the hemisphere and the geometrical center of the rectangular emit-
ting spot; a, b, and £, coordinates of the rectangular emitting spot, Indices 0, 1, 2, refer to the surface
of the hemisphere, the emitting spot, and the image spot, respectively.
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